COMPUTING K-TRIVIAL SETS BY INCOMPLETE RANDOM SETS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10284162" target="_blank" >RIV/00216208:11320/14:10284162 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/bsl.2013.3" target="_blank" >http://dx.doi.org/10.1017/bsl.2013.3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/bsl.2013.3" target="_blank" >10.1017/bsl.2013.3</a>
Alternative languages
Result language
angličtina
Original language name
COMPUTING K-TRIVIAL SETS BY INCOMPLETE RANDOM SETS
Original language description
Every K-trivial set is computable from an incomplete Martin-Lof random set, i.e., a Martin-Lof random set that does not compute the halting problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of Symbolic Logic
ISSN
1079-8986
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
80-90
UT code for WoS article
000342925900004
EID of the result in the Scopus database
—