A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126871" target="_blank" >RIV/00216208:11320/12:10126871 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation
Original language description
The paper deals with a numerical solution of the nonstationary heat equation with mixed Dirichlet/Neumann boundary conditions. The space semi-discretization is carried out with the aid of the interior penalty Galerkin methods and the backward Euler method is employed for the time discretization. The a posteriori upper error bound is derived.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Carolinae - Mathematica et Physica
ISSN
0001-7140
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
18
Pages from-to
77-94
UT code for WoS article
—
EID of the result in the Scopus database
—