SMALL MODULES OVER ABELIAN REGULAR RINGS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127157" target="_blank" >RIV/00216208:11320/12:10127157 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/00927872.2011.580439" target="_blank" >http://dx.doi.org/10.1080/00927872.2011.580439</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00927872.2011.580439" target="_blank" >10.1080/00927872.2011.580439</a>
Alternative languages
Result language
angličtina
Original language name
SMALL MODULES OVER ABELIAN REGULAR RINGS
Original language description
We study the structure of infinitely generated small modules over abelian regular rings, i.e., modules over which the covariant functor Hom commutes with direct sums. It is shown that every infinitely generated small module has either an infinitely generated factor which is at most 2(2 omega)-generated or a countably generated essential submodule. As a consequence, we prove a module-theoretic criterion of steadiness for abelian regular rings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Algebra
ISSN
0092-7872
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
2485-2493
UT code for WoS article
000306211800017
EID of the result in the Scopus database
—