All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topologically semisimple and topologically perfect topological rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00558266" target="_blank" >RIV/67985840:_____/22:00558266 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/22:10452304

  • Result on the web

    <a href="http://https:dx.doi.org/10.5565/PUBLMAT6622202" target="_blank" >http://https:dx.doi.org/10.5565/PUBLMAT6622202</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5565/PUBLMAT6622202" target="_blank" >10.5565/PUBLMAT6622202</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topologically semisimple and topologically perfect topological rings

  • Original language description

    Extending the Wedderburn-Artin theory of semisimple associative rings to the realm of topological rings with right linear topology, we show that the abelian category of left contramodules over such a ring is split (equivalently, semisimple) if and only if the abelian category of discrete right modules over the same ring is split (equivalently, semisimple). An extension of the Bass theory of left perfect rings to the topological realm is formulated as a list of conjecturally equivalent conditions, many equivalences and implications between which we prove. In particular, all the conditions are equivalent for topological rings with a countable base of neighborhoods of zero. We establish a connection between the concept of a topologically perfect topological ring and the theory of modules with perfect decomposition and show that a countably generated module Sigma-coperfect over its endomorphism ring has a perfect decomposition, partially answering a question of Angeleri Hugel and Saorin.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Publicacions Matematiques

  • ISSN

    0214-1493

  • e-ISSN

    0214-1493

  • Volume of the periodical

    66

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    ES - SPAIN

  • Number of pages

    84

  • Pages from-to

    457-540

  • UT code for WoS article

    000830838900002

  • EID of the result in the Scopus database

    2-s2.0-85133329381