All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flat ring epimorphisms of countable type

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523855" target="_blank" >RIV/67985840:_____/20:00523855 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1017/S001708951900017X" target="_blank" >https://doi.org/10.1017/S001708951900017X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S001708951900017X" target="_blank" >10.1017/S001708951900017X</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flat ring epimorphisms of countable type

  • Original language description

    Let R → U be an associative ring epimorphism such that U is a flat left R-module. Assume that the related Gabriel topology of right ideals in R has a countable base. Then we show that the left R-module U has projective dimension at most 1. Furthermore, the abelian category of left contramodules over the completion of R at fully faithfully embeds into the Geigle-Lenzing right perpendicular subcategory to U in the category of left R-modules, and every object of the latter abelian category is an extension of two objects of the former one. We discuss conditions under which the two abelian categories are equivalent. Given a right linear topology on an associative ring R, we consider the induced topology on every left R-module and, for a perfect Gabriel topology, compare the completion of a module with an appropriate Ext module. Finally, we characterize the U-strongly flat left R-modules by the two conditions of left positive-degree Ext-orthogonality to all left U-modules and all -separated -complete left R-modules.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Glasgow Mathematical Journal

  • ISSN

    0017-0895

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    57

  • Pages from-to

    383-439

  • UT code for WoS article

    000525379300008

  • EID of the result in the Scopus database

    2-s2.0-85065401417