All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Matlis category equivalences for a ring epimorphism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524150" target="_blank" >RIV/67985840:_____/20:00524150 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jpaa.2020.106398" target="_blank" >https://doi.org/10.1016/j.jpaa.2020.106398</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpaa.2020.106398" target="_blank" >10.1016/j.jpaa.2020.106398</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Matlis category equivalences for a ring epimorphism

  • Original language description

    Under mild assumptions, we construct the two Matlis additive category equivalences for an associative ring epimorphism u: R->U. Assuming that the ring epimorphism is homological of flat/projective dimension 1, we discuss the abelian categories of u-comodules and u-contramodules and construct the recollement of unbounded derived categories of R-modules, U-modules, and complexes of R-modules with u-co/contramodule cohomology. Further assumptions allow to describe the third category in the recollement as the unbounded derived category of the abelian categories of u-comodules and u-contramodules. For commutative rings, we also prove that any homological epimorphism of projective dimension 1 is flat. Injectivity of the map u is not required.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

  • Volume of the periodical

    224

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    25

  • Pages from-to

    106398

  • UT code for WoS article

    000530644800009

  • EID of the result in the Scopus database

    2-s2.0-85083013670