Matlis category equivalences for a ring epimorphism
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524150" target="_blank" >RIV/67985840:_____/20:00524150 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jpaa.2020.106398" target="_blank" >https://doi.org/10.1016/j.jpaa.2020.106398</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2020.106398" target="_blank" >10.1016/j.jpaa.2020.106398</a>
Alternative languages
Result language
angličtina
Original language name
Matlis category equivalences for a ring epimorphism
Original language description
Under mild assumptions, we construct the two Matlis additive category equivalences for an associative ring epimorphism u: R->U. Assuming that the ring epimorphism is homological of flat/projective dimension 1, we discuss the abelian categories of u-comodules and u-contramodules and construct the recollement of unbounded derived categories of R-modules, U-modules, and complexes of R-modules with u-co/contramodule cohomology. Further assumptions allow to describe the third category in the recollement as the unbounded derived category of the abelian categories of u-comodules and u-contramodules. For commutative rings, we also prove that any homological epimorphism of projective dimension 1 is flat. Injectivity of the map u is not required.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
—
Volume of the periodical
224
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
106398
UT code for WoS article
000530644800009
EID of the result in the Scopus database
2-s2.0-85083013670