All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flat commutative ring epimorphisms of almost Krull dimension zero

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00569842" target="_blank" >RIV/67985840:_____/23:00569842 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1142/S0219498823500603" target="_blank" >https://doi.org/10.1142/S0219498823500603</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219498823500603" target="_blank" >10.1142/S0219498823500603</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flat commutative ring epimorphisms of almost Krull dimension zero

  • Original language description

    In this paper, we consider flat epimorphisms of commutative rings R --> U such that, for every ideal I in R for which IU = U, the quotient ring R/I is semilocal of Krull dimension zero. Under these assumptions, we show that the projective dimension of the R-module U does not exceed 1. We also describe the Geigle-Lenzing perpendicular subcategory to the R-module U in R-Mod. Assuming additionally that the ring U and all the rings R/I are perfect, we show that all flat R-modules are U-strongly flat. Thus, we obtain a generalization of some results of a previous paper, where the case of the localization U of the ring R at a multiplicative subset S in R was considered.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra and its Applications

  • ISSN

    0219-4988

  • e-ISSN

    1793-6829

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    18

  • Pages from-to

    2350060

  • UT code for WoS article

    000936153400013

  • EID of the result in the Scopus database

    2-s2.0-85121026311