Flat commutative ring epimorphisms of almost Krull dimension zero
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00569842" target="_blank" >RIV/67985840:_____/23:00569842 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0219498823500603" target="_blank" >https://doi.org/10.1142/S0219498823500603</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219498823500603" target="_blank" >10.1142/S0219498823500603</a>
Alternative languages
Result language
angličtina
Original language name
Flat commutative ring epimorphisms of almost Krull dimension zero
Original language description
In this paper, we consider flat epimorphisms of commutative rings R --> U such that, for every ideal I in R for which IU = U, the quotient ring R/I is semilocal of Krull dimension zero. Under these assumptions, we show that the projective dimension of the R-module U does not exceed 1. We also describe the Geigle-Lenzing perpendicular subcategory to the R-module U in R-Mod. Assuming additionally that the ring U and all the rings R/I are perfect, we show that all flat R-modules are U-strongly flat. Thus, we obtain a generalization of some results of a previous paper, where the case of the localization U of the ring R at a multiplicative subset S in R was considered.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra and its Applications
ISSN
0219-4988
e-ISSN
1793-6829
Volume of the periodical
22
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
18
Pages from-to
2350060
UT code for WoS article
000936153400013
EID of the result in the Scopus database
2-s2.0-85121026311