All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

S-almost perfect commutative rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505376" target="_blank" >RIV/67985840:_____/19:00505376 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2019.05.018" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2019.05.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2019.05.018" target="_blank" >10.1016/j.jalgebra.2019.05.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    S-almost perfect commutative rings

  • Original language description

    Given a multiplicative subset S in a commutative ring R, we consider S-weakly cotorsion and S-strongly flat R-modules, and show that all R-modules have S-strongly flat covers if and only if all flat R-modules are S-strongly flat. These equivalent conditions hold if and only if the localization R_S is a perfect ring and, for every element s in S, the quotient ring R/sR is a perfect ring, too. The multiplicative subset S in R is allowed to contain zero-divisors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

  • Volume of the periodical

    532

  • Issue of the periodical within the volume

    15 August

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    34

  • Pages from-to

    323-356

  • UT code for WoS article

    000472815100014

  • EID of the result in the Scopus database

    2-s2.0-85066865657