All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The tilting-cotilting correspondence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00537019" target="_blank" >RIV/67985840:_____/21:00537019 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/21:10436783

  • Result on the web

    <a href="https://doi.org/10.1093/imrn/rnz116" target="_blank" >https://doi.org/10.1093/imrn/rnz116</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rnz116" target="_blank" >10.1093/imrn/rnz116</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The tilting-cotilting correspondence

  • Original language description

    To a big n-tilting object in a complete, cocomplete abelian category A with an injective cogenerator we assign a big n-cotilting object in a complete, cocomplete abelian category B with a projective generator and vice versa. Then we construct an equivalence between the (conventional or absolute) derived categories of A and B. Under various assumptions on A⁠, which cover a wide range of examples (for instance, if A is a module category or, more generally, a locally finitely presentable Grothendieck abelian category), we show that B is the abelian category of contramodules over a topological ring and that the derived equivalences are realized by a contramodule-valued variant of the usual derived Hom functor.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    86

  • Pages from-to

    191-276

  • UT code for WoS article

    000629746000006

  • EID of the result in the Scopus database

    2-s2.0-85103174026