All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Infinity-tilting theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508627" target="_blank" >RIV/67985840:_____/19:00508627 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/19:10400305

  • Result on the web

    <a href="http://dx.doi.org/10.2140/pjm.2019.301.297" target="_blank" >http://dx.doi.org/10.2140/pjm.2019.301.297</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2140/pjm.2019.301.297" target="_blank" >10.2140/pjm.2019.301.297</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Infinity-tilting theory

  • Original language description

    We define the notion of an infinitely generated tilting object of infinite homologicaldimension in an abelian category. A one-to-one correspondence between ∞-tiltingobjects in complete, cocomplete abelian categories with an injective cogenerator and ∞-cotilting objects incomplete, cocomplete abelian categories with a projective generator is constructed. We also introduce ∞-tilting pairs, consistingof an ∞-tilting objectand its ∞-tiltingclass, and obtain a bijective correspondence between ∞-tilting and ∞-cotiltingpairs. Finally, we discuss the related derived equivalences and t-structures.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pacific Journal of Mathematics

  • ISSN

    0030-8730

  • e-ISSN

  • Volume of the periodical

    301

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    38

  • Pages from-to

    297-334

  • UT code for WoS article

    000486315100013

  • EID of the result in the Scopus database

    2-s2.0-85072880662