Infinity-tilting theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508627" target="_blank" >RIV/67985840:_____/19:00508627 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10400305
Result on the web
<a href="http://dx.doi.org/10.2140/pjm.2019.301.297" target="_blank" >http://dx.doi.org/10.2140/pjm.2019.301.297</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2140/pjm.2019.301.297" target="_blank" >10.2140/pjm.2019.301.297</a>
Alternative languages
Result language
angličtina
Original language name
Infinity-tilting theory
Original language description
We define the notion of an infinitely generated tilting object of infinite homologicaldimension in an abelian category. A one-to-one correspondence between ∞-tiltingobjects in complete, cocomplete abelian categories with an injective cogenerator and ∞-cotilting objects incomplete, cocomplete abelian categories with a projective generator is constructed. We also introduce ∞-tilting pairs, consistingof an ∞-tilting objectand its ∞-tiltingclass, and obtain a bijective correspondence between ∞-tilting and ∞-cotiltingpairs. Finally, we discuss the related derived equivalences and t-structures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pacific Journal of Mathematics
ISSN
0030-8730
e-ISSN
—
Volume of the periodical
301
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
297-334
UT code for WoS article
000486315100013
EID of the result in the Scopus database
2-s2.0-85072880662