All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Colimit-dense subcategories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00521009" target="_blank" >RIV/67985840:_____/19:00521009 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/19:00108115 RIV/68407700:21230/19:00338237

  • Result on the web

    <a href="http://dx.doi.org/10.14712/1213-7243.2019.021" target="_blank" >http://dx.doi.org/10.14712/1213-7243.2019.021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2019.021" target="_blank" >10.14712/1213-7243.2019.021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Colimit-dense subcategories

  • Original language description

    Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka's Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit-dense subcategory and a generator consisting of presentable objects. We further show that a 3-element set is colimit-dense in the category opposite to sets, and spaces of countable dimension are colimit-dense in the category opposite to vector spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    16

  • Pages from-to

    447-462

  • UT code for WoS article

    000508557900002

  • EID of the result in the Scopus database