Contramodules over pro-perfect topological rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00551157" target="_blank" >RIV/67985840:_____/22:00551157 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/forum-2021-0010" target="_blank" >https://doi.org/10.1515/forum-2021-0010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2021-0010" target="_blank" >10.1515/forum-2021-0010</a>
Alternative languages
Result language
angličtina
Original language name
Contramodules over pro-perfect topological rings
Original language description
For four wide classes of topological rings R, we show that all flat left R-contramodules have projective covers if and only if all flat left R-contramodules are projective if and only if all left R-contramodules have projective covers if and only if all descending chains of cyclic discrete right R-modules terminate if and only if all the discrete quotient rings of R are left perfect. Three classes of topological rings for which this holds are the complete, separated topological associative rings with a base of neighborhoods of zero formed by open two-sided ideals such that either the ring is commutative, or it has a countable base of neighborhoods of zero, or it has only a finite number of semisimple discrete quotient rings. The fourth class consists of some topological rings with a base of open right ideals, it is a generalization of the first three classes. The key technique on which the proofs are based is the contramodule Nakayama lemma for topologically T-nilpotent ideals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forum Mathematicum
ISSN
0933-7741
e-ISSN
1435-5337
Volume of the periodical
34
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
39
Pages from-to
1-39
UT code for WoS article
000737425500001
EID of the result in the Scopus database
2-s2.0-85120616208