All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dimension gap under conformal mappings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127315" target="_blank" >RIV/00216208:11320/12:10127315 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2012.03.018" target="_blank" >http://dx.doi.org/10.1016/j.aim.2012.03.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2012.03.018" target="_blank" >10.1016/j.aim.2012.03.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dimension gap under conformal mappings

  • Original language description

    We give an estimate for the Hausdorff gauge dimension of the boundary of a simply connected planar domain under p-integrability of the hyperbolic metric, p > 1. This estimate does not degenerate when p tends to one; for p = 1 the boundary can even have positive area. The same phenomenon is extended to general planar domains in terms of the quasihyperbolic metric. We also give an example which shows that our estimates are essentially sharp.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    230

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    1423-1441

  • UT code for WoS article

    000304386400025

  • EID of the result in the Scopus database