Dimension gap under conformal mappings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127315" target="_blank" >RIV/00216208:11320/12:10127315 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2012.03.018" target="_blank" >http://dx.doi.org/10.1016/j.aim.2012.03.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2012.03.018" target="_blank" >10.1016/j.aim.2012.03.018</a>
Alternative languages
Result language
angličtina
Original language name
Dimension gap under conformal mappings
Original language description
We give an estimate for the Hausdorff gauge dimension of the boundary of a simply connected planar domain under p-integrability of the hyperbolic metric, p > 1. This estimate does not degenerate when p tends to one; for p = 1 the boundary can even have positive area. The same phenomenon is extended to general planar domains in terms of the quasihyperbolic metric. We also give an example which shows that our estimates are essentially sharp.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
230
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
1423-1441
UT code for WoS article
000304386400025
EID of the result in the Scopus database
—