On the approximate fixed point property in abstract spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127319" target="_blank" >RIV/00216208:11320/12:10127319 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00209-011-0915-6" target="_blank" >http://dx.doi.org/10.1007/s00209-011-0915-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-011-0915-6" target="_blank" >10.1007/s00209-011-0915-6</a>
Alternative languages
Result language
angličtina
Original language name
On the approximate fixed point property in abstract spaces
Original language description
Let X be a Hausdorff topological vector space, X * its topological dual and Z a subset of X *. In this paper, we establish some results concerning the sigma(X,Z)-approximate fixed point property for bounded, closed convex subsets C of X. Three major situations are studied. First, when Z is separable in the strong topology. Second, when X is a metrizable locally convex space and Z = X *, and third when X is not necessarily metrizable but admits a metrizable locally convex topology compatible with the duality. Our approach focuses on establishing the Frechet-Urysohn property for certain sets with regarding the sigma(X, Z)-topology. The support tools include the Brouwer's fixed point theorem and an analogous version of the classical Rosenthal's l_1-theorem for l_1-sequences in metrizable case. The results are novel and generalize previous work obtained by the authors in Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190901" target="_blank" >IAA100190901: Topological and geometric structures in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
271
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
1271-1285
UT code for WoS article
000306342700035
EID of the result in the Scopus database
—