Spaces not containing l_1 have weak approximate fixed point property
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10099051" target="_blank" >RIV/00216208:11320/11:10099051 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2010.06.052" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2010.06.052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2010.06.052" target="_blank" >10.1016/j.jmaa.2010.06.052</a>
Alternative languages
Result language
angličtina
Original language name
Spaces not containing l_1 have weak approximate fixed point property
Original language description
A nonempty closed convex bounded subset C of a Banach space is said to have the weak approximate fixed point property if for every continuous map f there is a sequence {x_n} in C such that x_n, f(x_n) converge weakly to 0. We prove in particular that C has this property whenever it contains no sequence equivalent to the standard basis of l_1. As a byproduct we obtain a characterization of Banach spaces not containing l_1 in terms of the weak topology.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190901" target="_blank" >IAA100190901: Topological and geometric structures in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
373
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
4
Pages from-to
134-137
UT code for WoS article
000282196100013
EID of the result in the Scopus database
—