All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Grothendieck C(K)-spaces and the Josefson-Nissenzweig theorem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579686" target="_blank" >RIV/67985840:_____/23:00579686 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4064/fm218-6-2023" target="_blank" >https://doi.org/10.4064/fm218-6-2023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/fm218-6-2023" target="_blank" >10.4064/fm218-6-2023</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Grothendieck C(K)-spaces and the Josefson-Nissenzweig theorem

  • Original language description

    For a compact space K, the Banach space C(K) is said to have the l(1)-Grothendieck property if every weak* convergent sequence (mu(n) : n is an element of omega) of functionals on C(K) such that mu(n) is an element of l(1)(K) for every n is an element of omega is weakly convergent. Thus, the l(1)- Grothendieck property is a weakening of the standard Grothendieck property for Banach spaces of continuous functions. We observe that C(K) has the l(1)-Grothendieck property if and only if there does not exist any sequence of functionals (mu(n) : n is an element of omega) on C(K), with mu(n) is an element of l(1)(K) for every n is an element of omega, satisfying the conclusion of the classical Josefson-Nissenzweig theorem. We construct an example of a separable compact space K such that C(K) has the l(1)-Grothendieck property but it does not have the Grothendieck property. We also show that for many classical consistent examples of Efimov spaces K their Banach spaces C(K) do not have the l(1)-Grothendieck property.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fundamenta Mathematicae

  • ISSN

    0016-2736

  • e-ISSN

    1730-6329

  • Volume of the periodical

    263

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    27

  • Pages from-to

    105-131

  • UT code for WoS article

    001108631400001

  • EID of the result in the Scopus database

    2-s2.0-85179096168