C*-ALGEBRAS HAVE A QUANTITATIVE VERSION OF PELCZYNSKI'S PROPERTY (V)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369897" target="_blank" >RIV/00216208:11320/17:10369897 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.21136/CMJ.2017.0242-16" target="_blank" >http://dx.doi.org/10.21136/CMJ.2017.0242-16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/CMJ.2017.0242-16" target="_blank" >10.21136/CMJ.2017.0242-16</a>
Alternative languages
Result language
angličtina
Original language name
C*-ALGEBRAS HAVE A QUANTITATIVE VERSION OF PELCZYNSKI'S PROPERTY (V)
Original language description
A Banach space X has Pelczynski's property (V) if for every Banach space Y every unconditionally converging operator T: X -> Y is weakly compact. H. Pfitzner proved that C*-algebras have Pelczynski's property (V). In the preprint (Krulisova, (2015)) the author explores possible quantifications of the property (V) and shows that C(K) spaces for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner's theorem. Moreover, we prove that in dual Banach spaces a quantitative version of the property (V) implies a quantitative version of the Grothendieck property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
15
Pages from-to
937-951
UT code for WoS article
000416445500004
EID of the result in the Scopus database
2-s2.0-85028310944