All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Calderón-type theorems for operators with non-standard endpoint behavior on Lorentz spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127345" target="_blank" >RIV/00216208:11320/12:10127345 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mana.201100095" target="_blank" >http://dx.doi.org/10.1002/mana.201100095</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201100095" target="_blank" >10.1002/mana.201100095</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Calderón-type theorems for operators with non-standard endpoint behavior on Lorentz spaces

  • Original language description

    The Calderón theorem states that every quasilinear operator, which is bounded both from $L^{p_1,1}$ to $L^{q_1,infty}$, and from $L^{p_2,1}$ to $L^{q_2,infty}$ for properly ordered values of $p_1$, $p_2$, $q_1$, $q_2$, is bounded on some rearrangement-invariant space if and only if the so-called Calderón operator is bounded on the corresponding representation space. We will establish Calderón-type theorems for non-standard endpoint behavior, where Lorentz $Lambda$ and $M$ spaces will be the endpointsof the interpolation segment. Two distinctive types of non-standard behavior are to be discussed; we'll explore the operators bounded both from $Lambda(X_1)$ to $Lambda(Y_1)$, and from $Lambda(X_2)$ to $M(Y_2)$ using duality arguments, thus, we needto study the operators bounded both from $Lambda(X_1)$ to $M(Y_1)$, and from $M(X_2)$ to $M(Y_2)$ first. For that purpose, we evaluate Peetre's $K$-functional for varied pairs of Lorentz spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    285

  • Issue of the periodical within the volume

    11-12

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    1450-1465

  • UT code for WoS article

    000307008700012

  • EID of the result in the Scopus database