All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bridging Separations in Matroids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F05%3A00028918" target="_blank" >RIV/00216224:14330/05:00028918 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bridging Separations in Matroids

  • Original language description

    Let $(X_1,X_2)$ be an exact $k$--separation of a matroid $N$. If $M$ is a matroid that contains $N$ as a minor and the $k$--separation $(X_1,X_2)$ does not extend to a $k$--separation in $M$ then we say that $M$ {em bridges} the $k$--separation $(X_1,X_2)$ in $N$. One would hope that a minor minimal bridge for $(X_1,X_2)$ would not be much larger than $N$. Unfortunately there are instances in which one can construct arbitaraily large minor minimal bridges. We restrict our attention to the class of matroids representable over a fixed finite field and show that here minor minimal bridges are bounded in size.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F05%2F0050" target="_blank" >GA201/05/0050: Structural properties and algorithmic complexity of discrete problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000228918000018

  • EID of the result in the Scopus database