On a new normalization for tractor covariant derivatives
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10129033" target="_blank" >RIV/00216208:11320/12:10129033 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/12:00064347
Result on the web
<a href="http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=14&iss=6&rank=5" target="_blank" >http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=14&iss=6&rank=5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JEMS/349" target="_blank" >10.4171/JEMS/349</a>
Alternative languages
Result language
angličtina
Original language name
On a new normalization for tractor covariant derivatives
Original language description
A regular normal parabolic geometry of type $G/P$ on a manifold $M$ gives rise to sequences $D_i$ of invariant differential operators, known as the curved version of the BGG resolution. These sequences are constructed from the normal covariant derivative$na^om$ on the corresponding tractor bundle $V,$ where $om$ is the normal Cartan connection. The first operator $D_0$ in the sequence is overdetermined and it is well known that $na^om$ yields the prolongation of this operator in the homogeneous case $M = G/P$. Our first main result is the curved version of such a prolongation. This requires a new normalization $tilde{na}$ of the tractor covariant derivative on $V$. Moreover, we obtain an analogue for higher operators $D_i$. In that case one needs to modify the exterior covariant derivative $d^{na^om}$ by differential terms. Finally we demonstrate these results on simple examples in projective and Grassmannian geometry. Our approach is based on standard techniques of the BGG m
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the European Mathematical Society
ISSN
1435-9855
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
14
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
1859-1883
UT code for WoS article
000311877200005
EID of the result in the Scopus database
—