Subcomplexes in curved BGG-sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10129248" target="_blank" >RIV/00216208:11320/12:10129248 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00208-011-0726-4" target="_blank" >http://dx.doi.org/10.1007/s00208-011-0726-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-011-0726-4" target="_blank" >10.1007/s00208-011-0726-4</a>
Alternative languages
Result language
angličtina
Original language name
Subcomplexes in curved BGG-sequences
Original language description
BGG-sequences offer a uniform construction for invariant differential operators for a large class of geometric structures called parabolic geometries. For locally flat geometries, the resulting sequences are complexes, but in general the compositions ofthe operators in such a sequence are nonzero. In this paper, we show that under appropriate torsion freeness and/or semi-flatness assumptions certain parts of all BGG sequences are complexes. Several examples of structures, including quaternionic structures, hypersurface type CR structures and quaternionic contact structures are discussed in detail. In the case of quaternionic structures we show that several families of complexes obtained in this way are elliptic.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
—
Volume of the periodical
354
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
111-136
UT code for WoS article
000307442300004
EID of the result in the Scopus database
—