Approximate Duality of Multicommodity Multiroute Flows and Cuts: Single Source Case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10129396" target="_blank" >RIV/00216208:11320/12:10129396 - isvavai.cz</a>
Result on the web
<a href="http://dl.acm.org/citation.cfm?id=2095180" target="_blank" >http://dl.acm.org/citation.cfm?id=2095180</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximate Duality of Multicommodity Multiroute Flows and Cuts: Single Source Case
Original language description
Given an integer $h$, a graph $G=(V,E)$ with arbitrary positive edge capacities and $k$ pairs of vertices $(s_1,t_1), (s_2,t_2), ldots, (s_k,t_k)$, called terminals, an $h$-route cut is a set $Fsubseteq E$ of edges such that after the removal of the edges in $F$ no pair $s_i-t_i$ is connected by $h$ edge-disjoint paths (i.e., the connectivity of every $s_i-t_i$ pair is at most $h-1$ in $(V,Esetminus F)$). The $h$-route cut is a natural generalization of the classical cut problem for multicommodity flows (take $h=1$). The main result of this paper is an $O(h^5 2^{2h} (h+log k)^2)$-approximation algorithm for the minimum $h$-route cut problem in the case that $s_1=s_2=cdots=s_k$, called the single source case. As a corollary of it we obtain an approximate duality theorem for multiroute multicommodity flows and cuts with a single source. This partially answers an open question posted in several previous papers dealing with cuts for multicommodity multiroute problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. of 23 ACM-SIAM Symposium on Discrete Algorithms
ISBN
978-1-61197-211-5
ISSN
2160-1445
e-ISSN
—
Number of pages
11
Pages from-to
800-810
Publisher name
Society for Industrial and Applied Mathematics.
Place of publication
USA
Event location
Japonsko, Kjoto
Event date
Jan 17, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—