Solving Multicut Faster Than 2^n
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F14%3A00221015" target="_blank" >RIV/68407700:21240/14:00221015 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-662-44777-2_55" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-662-44777-2_55</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-44777-2_55" target="_blank" >10.1007/978-3-662-44777-2_55</a>
Alternative languages
Result language
angličtina
Original language name
Solving Multicut Faster Than 2^n
Original language description
In the Multicut problem, we are given an undirected graph G=(V,E) and a family T = {(s_i, t_i) | s_i, t_i in V} of pairs of requests and the objective is to find a minimum sized set S?V such that every connected component of G-S contains at most one of s_i and t_i for any pair (s_i, t_i) in T. In this paper we give the first non-trivial algorithm for Multicut running in time O(1.987^n).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-13017P" target="_blank" >GP14-13017P: Parameterized Algorithms for Fundamental Network Problems Related to Connectivity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algorithms - ESA 2014
ISBN
978-3-662-44776-5
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
666-676
Publisher name
Springer
Place of publication
Heidelberg
Event location
Wroclaw
Event date
Sep 8, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000345502900055