Constraint Satisfaction for Learning Hypotheses in Inductive Logic Programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10129947" target="_blank" >RIV/00216208:11320/12:10129947 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/12:00202362
Result on the web
<a href="http://dx.doi.org/10.1007/978-1-4419-1428-6_1794" target="_blank" >http://dx.doi.org/10.1007/978-1-4419-1428-6_1794</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-1-4419-1428-6_1794" target="_blank" >10.1007/978-1-4419-1428-6_1794</a>
Alternative languages
Result language
angličtina
Original language name
Constraint Satisfaction for Learning Hypotheses in Inductive Logic Programming
Original language description
Inductive logic programming is a sub?eld of machine learning which uses ?rst-order logic as a uniform representation of examples, background knowledge, and hypotheses. In many works, it is assumed that examples are clauses and the goal is to ?nd a consistent hypothesis H, that is, a clause entailing all positive examples and no negative example. We apply constraint satisfaction to learn hypotheses in ILP.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0509" target="_blank" >GA201/08/0509: LeCoS: merging machine LEarning and COnstraint Satisfaction</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Encyclopedia of the Sciences of Learning
ISBN
978-1-4419-1427-9
Number of pages of the result
4
Pages from-to
777-780
Number of pages of the book
4300
Publisher name
Springer
Place of publication
Berlin / Heidelberg
UT code for WoS chapter
—