Indonesian Dependency Treebank: Annotation and Parsing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10130048" target="_blank" >RIV/00216208:11320/12:10130048 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Indonesian Dependency Treebank: Annotation and Parsing
Original language description
We also show ensemble dependency parsing and self training approaches applicable to under-resourced languages using our manually annotated dependency structures. We show that for an under-resourced language, the use of tuning data for a meta classifier is more effective than using it as additional training data for individual parsers. This meta-classifier creates an ensemble dependency parser and increases the dependency accuracy by 4.92% on average and 1.99% over the best individual models on average.As the data sizes grow for the the under-resourced language a meta classifier can easily adapt. To the best of our knowledge this is the first full implementation of a dependency parser for Indonesian. Using self-training in combination with our EnsembleSVM Parser we show additional improvement. Using this parsing model we plan on expanding the size of the corpus by using a semi-supervised approach by applying the parser and correcting the errors, reducing the amount of annotation time
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 26th Pacific Asia Conference on Language, Information and Computation
ISBN
978-979-1421-17-1
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
137-145
Publisher name
Faculty of Computer Science, Universitas Indonesia
Place of publication
Bali, Indonesia
Event location
Bali, Indonesia
Event date
Nov 7, 2012
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—