FLAT MITTAG-LEFFLER MODULES OVER COUNTABLE RINGS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10130568" target="_blank" >RIV/00216208:11320/12:10130568 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
FLAT MITTAG-LEFFLER MODULES OVER COUNTABLE RINGS
Original language description
We show that over any ring, the double Ext-orthogonal class to all flat Mittag-Leffler modules contains all countable direct limits of flat Mittag-Leffler modules. If the ring is countable, then the double orthogonal class consists precisely of all flatmodules, and we deduce, using a recent result of Saroch and Trlifaj, that the class of flat Mittag-Leffler modules is not precovering in Mod-R unless R is right perfect.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
140
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
1527-1533
UT code for WoS article
000302837100006
EID of the result in the Scopus database
—