Approximations and Mittag-Leffler conditions the tools
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383321" target="_blank" >RIV/00216208:11320/18:10383321 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11856-018-1710-4" target="_blank" >https://doi.org/10.1007/s11856-018-1710-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-018-1710-4" target="_blank" >10.1007/s11856-018-1710-4</a>
Alternative languages
Result language
angličtina
Original language name
Approximations and Mittag-Leffler conditions the tools
Original language description
Mittag-Leffler modules occur naturally in algebra, algebraic geometry, and model theory, [20], [14], [19]. If R is a non-right perfect ring, then it is known that in contrast with the classes of all projective and flat modules, the class of all flat Mittag-Leffler modules is not deconstructible [16], and it does not provide for approximations when R has cardinality ae<currency> a"mu(0), [8]. We remove the cardinality restriction on R in the latter result. We also prove an extension of the Countable Telescope Conjecture [23]: a cotorsion pair (A, B) is of countable type whenever the class B is closed under direct limits. In order to prove these results, we develop new general tools combining relative Mittag-Leffler conditions with set-theoretic homological algebra. They make it possible to trace the above facts to their ultimate, countable, origins in the properties of Bass modules. These tools have already found a number of applications: e.g., they yield a positive answer to Enochs' problem on module approximations for classes of modules associated with tilting [4], and enable investigation of new classes of flat modules occurring in algebraic geometry [26]. Finally, the ideas from Section 3 have led to the solution of a long-standing problem due to Auslander on the existence of right almost split maps [22].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
226
Issue of the periodical within the volume
2
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
20
Pages from-to
737-756
UT code for WoS article
000437012800007
EID of the result in the Scopus database
2-s2.0-85048263134