All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparing neural networks with other predictive models in artificial stock market

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10130827" target="_blank" >RIV/00216208:11320/12:10130827 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparing neural networks with other predictive models in artificial stock market

  • Original language description

    A new way of comparing models for forecasting was created. The confronted models are neural networks (feed-forward neural networks and Elman's simple recurrent neural networks), ARMA models (AR and ARMA), random forecast, a trivial forecast of future value by the last known value and moving average forecast. winning model is the one which earns the most money.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamic Models in Economics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematical Methods in Economics 2012 Proceedings

  • ISBN

    978-80-7248-779-0

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    502-507

  • Publisher name

    Silesian University in Opava

  • Place of publication

    Karviná

  • Event location

    Karviná

  • Event date

    Sep 11, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article