All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Some statistical and CI models to predict chaotic high-frequency financial data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10242813" target="_blank" >RIV/61989100:27510/19:10242813 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/book/10.1007/978-3-030-23756-1" target="_blank" >https://link.springer.com/book/10.1007/978-3-030-23756-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-23756-1_154" target="_blank" >10.1007/978-3-030-23756-1_154</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Some statistical and CI models to predict chaotic high-frequency financial data

  • Original language description

    Forecasting of financial time series data is a complex problem, which has benefited from recent advancements and research in machine learning. To forecast time series data, two methodological frameworks of statistical and computational intelligence modelling are considered. The statistical methodological approach is based on the theory of invertible ARMA models. As a competitive tool to statistical forecasting models, we use the popular classic neural network of perceptron type. To train neural networks, the BP algorithm and heuristics like genetic and micro-genetic algorithm are implemented. A comparative analysis of selected learning methods is also performed and evaluated. (C) 2020, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 1029

  • ISBN

    978-3-030-23755-4

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    1315-1323

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Istanbul

  • Event date

    Jul 23, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article