MSOL Restricted Contractibility to Planar Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10131340" target="_blank" >RIV/00216208:11320/12:10131340 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-33293-7_19" target="_blank" >http://dx.doi.org/10.1007/978-3-642-33293-7_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-33293-7_19" target="_blank" >10.1007/978-3-642-33293-7_19</a>
Alternative languages
Result language
angličtina
Original language name
MSOL Restricted Contractibility to Planar Graphs
Original language description
We study the computational complexity of graph planarization via edge contraction. The problem Contract asks whether there exists a set S of at most k edges that when contracted produces a planar graph. We give an FPT algorithm in time $mathcal{O}(n^2 f(k))$ which solves a more general problem P-RestrictedContract in which S has to satisfy in addition a fixed inclusion-closed MSOL formula P. For different formulas P we get different problems. As a specific example, we study the ?-subgraph contractability problem in which edges of a set S are required to form disjoint connected subgraphs of size at most ?. This problem can be solved in time $mathcal{O}(n^2 f'(k,l))$ using the general algorithm. We also show that for ? greater than 1 the problem is NP-complete. And it remains NP-complete when generalized for a fixed genus (instead of planar graphs).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
7535
Issue of the periodical within the volume
Fall
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
194-205
UT code for WoS article
—
EID of the result in the Scopus database
—