All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MSOL Restricted Contractibility to Planar Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10131340" target="_blank" >RIV/00216208:11320/12:10131340 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-33293-7_19" target="_blank" >http://dx.doi.org/10.1007/978-3-642-33293-7_19</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-33293-7_19" target="_blank" >10.1007/978-3-642-33293-7_19</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MSOL Restricted Contractibility to Planar Graphs

  • Original language description

    We study the computational complexity of graph planarization via edge contraction. The problem Contract asks whether there exists a set S of at most k edges that when contracted produces a planar graph. We give an FPT algorithm in time $mathcal{O}(n^2 f(k))$ which solves a more general problem P-RestrictedContract in which S has to satisfy in addition a fixed inclusion-closed MSOL formula P. For different formulas P we get different problems. As a specific example, we study the ?-subgraph contractability problem in which edges of a set S are required to form disjoint connected subgraphs of size at most ?. This problem can be solved in time $mathcal{O}(n^2 f'(k,l))$ using the general algorithm. We also show that for ? greater than 1 the problem is NP-complete. And it remains NP-complete when generalized for a fixed genus (instead of planar graphs).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    7535

  • Issue of the periodical within the volume

    Fall

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    194-205

  • UT code for WoS article

  • EID of the result in the Scopus database