All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MSOL restricted contractibility to planar graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368365" target="_blank" >RIV/00216208:11320/17:10368365 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.tcs.2017.02.030" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2017.02.030</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2017.02.030" target="_blank" >10.1016/j.tcs.2017.02.030</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MSOL restricted contractibility to planar graphs

  • Original language description

    We study the computational complexity of graph planarization via edge contraction. The problem CONTRACT asks whether there exists a set S of at most k edges that when contracted produces a planar graph. We work with a more general problem called P-RESTRICTEDCONTRACT in which S, in addition, is required to satisfy a fixed MSOL formula P(S, G). We give an FPT algorithm in time O(n(2) f (k)) which solves P-RESTRICTEDCONTRACT, where n is number of vertices of the graph and P(S, G) is (i) inclusion-closed and (ii) inert contraction-closed (where inert edges are the edges non-incident to any inclusion-minimal solution S). As a specific example, we can solve the l-subgraph contractibility problem in which the edges of the set S are required to form disjoint connected subgraphs of size at most l. This problem can be solved in time O(n(2) (k, l)) using the general algorithm. We also show that for l &gt;= 2 the problem is NP-complete.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Volume of the periodical

    676

  • Issue of the periodical within the volume

    Květen

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000401399800001

  • EID of the result in the Scopus database