MSOL restricted contractibility to planar graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368365" target="_blank" >RIV/00216208:11320/17:10368365 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2017.02.030" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2017.02.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2017.02.030" target="_blank" >10.1016/j.tcs.2017.02.030</a>
Alternative languages
Result language
angličtina
Original language name
MSOL restricted contractibility to planar graphs
Original language description
We study the computational complexity of graph planarization via edge contraction. The problem CONTRACT asks whether there exists a set S of at most k edges that when contracted produces a planar graph. We work with a more general problem called P-RESTRICTEDCONTRACT in which S, in addition, is required to satisfy a fixed MSOL formula P(S, G). We give an FPT algorithm in time O(n(2) f (k)) which solves P-RESTRICTEDCONTRACT, where n is number of vertices of the graph and P(S, G) is (i) inclusion-closed and (ii) inert contraction-closed (where inert edges are the edges non-incident to any inclusion-minimal solution S). As a specific example, we can solve the l-subgraph contractibility problem in which the edges of the set S are required to form disjoint connected subgraphs of size at most l. This problem can be solved in time O(n(2) (k, l)) using the general algorithm. We also show that for l >= 2 the problem is NP-complete.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
676
Issue of the periodical within the volume
Květen
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000401399800001
EID of the result in the Scopus database
—