Extending Partial Representations of Subclasses of Chordal Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10131342" target="_blank" >RIV/00216208:11320/12:10131342 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-35261-4_47" target="_blank" >http://dx.doi.org/10.1007/978-3-642-35261-4_47</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-35261-4_47" target="_blank" >10.1007/978-3-642-35261-4_47</a>
Alternative languages
Result language
angličtina
Original language name
Extending Partial Representations of Subclasses of Chordal Graphs
Original language description
Chordal graphs are intersection graphs of subtrees in a tree. We investigate complexity of the partial representation extension problem for chordal graphs. A partial representation specifies a tree T' and some pre-drawn subtrees. It asks whether it is possible to construct a representation inside a modified tree T which extends the partial representation (keeps the pre-drawn subtrees unchanged). We consider four modifications of T' and get vastly different problems. In some cases, the problem is interesting even if just T' is given and no subtree is pre-drawn. Also, we consider three well-known subclasses of chordal graphs: Proper interval graphs, interval graphs and path graphs. We give an almost complete complexity characterization.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
7676
Issue of the periodical within the volume
Fall
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
444-454
UT code for WoS article
—
EID of the result in the Scopus database
—