Testing Isomorphism of Chordal Graphs of Bounded Leafage is Fixed Parameter Tractable
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966101" target="_blank" >RIV/49777513:23520/22:43966101 - isvavai.cz</a>
Result on the web
<a href="https://www.springer.com/series/558" target="_blank" >https://www.springer.com/series/558</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-15914-5_3" target="_blank" >10.1007/978-3-031-15914-5_3</a>
Alternative languages
Result language
angličtina
Original language name
Testing Isomorphism of Chordal Graphs of Bounded Leafage is Fixed Parameter Tractable
Original language description
The computational complexity of the graph isomorphism problem is considered to be a major open problem in theoretical computer science. It is known that testing isomorphism of chordal graphs is polynomial-time equivalent to the general graph isomorphism problem. Every chordal graph can be represented as the intersection graph of some subtrees of a representing tree, and the leafage of a chordal graph is defined to be the minimum number of leaves in a representing tree for it. We prove that chordal graph isomorphism is fixed parameter tractable with leafage as parameter.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-15576S" target="_blank" >GA20-15576S: Graph Covers: Symmetries and Complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-031-15913-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
14
Pages from-to
29-42
Publisher name
Springer
Place of publication
Cham
Event location
Tubingen
Event date
Jun 22, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—