Deformation theory of algebras and their diagrams
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10133234" target="_blank" >RIV/00216208:11320/12:10133234 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/12:00379741
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Deformation theory of algebras and their diagrams
Original language description
This book brings together both the classical and current aspects of deformation theory. The presentation is mostly self-contained, assuming only basic knowledge of commutative algebra, homological algebra and category theory. In the interest of readability, some technically complicated proofs have been omitted when a suitable reference was available. The relation between the uniform continuity of algebraic maps and topologized tensor products is explained in detail, however, as this subject does not seem to be commonly known and the literature is scarce. The exposition begins by recalling Gerstenhaber's classical theory for associative algebras. The focus then shifts to a homotopy-invariant setup of Maurer-Cartan moduli spaces. As an application, Kontsevich's approach to deformation quantization of Poisson manifolds is reviewed. Then, after a brief introduction to operads, a strongly homotopy Lie algebra governing deformations of (diagrams of) algebras of a given type is described, fol
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
978-0-8218-8979-4
Number of pages
129
Publisher name
American Mathematical Society
Place of publication
Providence
UT code for WoS book
—