Finite reflection groups and the Dunkl-Laplace differential-difference operators in conformal geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10129043" target="_blank" >RIV/00216208:11320/13:10129043 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S092622451200112X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S092622451200112X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2012.12.001" target="_blank" >10.1016/j.difgeo.2012.12.001</a>
Alternative languages
Result language
angličtina
Original language name
Finite reflection groups and the Dunkl-Laplace differential-difference operators in conformal geometry
Original language description
For a finite reflection subgroup $Gleq O(n+1,1,mR)$ of the conformal group of the sphere with standard conformal structure $(S^n,[g_0])$, we geometrically derive differential-difference Dunkl version of the series of conformally invariant differentialoperators with symbols given by powers of Laplace operator. The construction can be regarded as a deformation of the Fefferman-Graham ambient metric construction of GJMS operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
31
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
166-174
UT code for WoS article
—
EID of the result in the Scopus database
—