Conformally invariant higher order higher spin operators on the sphere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128931" target="_blank" >RIV/00216208:11320/12:10128931 - isvavai.cz</a>
Result on the web
<a href="http://proceedings.aip.org/search?sortby=relevance&key=APCPCS&searchzone=2&searchtype=searchin&faceted=faceted&possible1zone=article&fromvolume=1493&fromissue=1&tovolume=1493&toissue=1&q=Smid" target="_blank" >http://proceedings.aip.org/search?sortby=relevance&key=APCPCS&searchzone=2&searchtype=searchin&faceted=faceted&possible1zone=article&fromvolume=1493&fromissue=1&tovolume=1493&toissue=1&q=Smid</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4765596" target="_blank" >10.1063/1.4765596</a>
Alternative languages
Result language
angličtina
Original language name
Conformally invariant higher order higher spin operators on the sphere
Original language description
We study conformally invariant differential operators on functions valued in Spin(n)-representations with half-integral highest weights (higher spin representations) on the sphere. We show that for most of these representations there is a unique such operator of arbitrary odd order, and construct new examples for the highest weight (5/2, 1/2, ... , 1/2), using the spectrum generating method by Branson, Orsted and Olafsson [6]. These operators are higher spin analogs of the conformally invariant powers of Dirac operator first constructed by Liu and Ryan [21].
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2012
ISBN
978-0-7354-1105-0
ISSN
0094-243X
e-ISSN
—
Number of pages
6
Pages from-to
911-916
Publisher name
American Institute of Physics
Place of publication
Melville, New York, USA
Event location
Wien
Event date
Jul 10, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000312264400135