Polynomial Invariants for the Rarita-Schwinger Operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206923" target="_blank" >RIV/00216208:11320/09:00206923 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Polynomial Invariants for the Rarita-Schwinger Operator
Original language description
We show that polynomial invariant operators on functions with values in the Spin(n) representation with highest weight (3/2,1/2,...,1/2) are spanned by the symbols of the Laplace and Rarita-Schwinger operators. This result generalizes the well known description of polynomial invariants on the scalar and spinor-valued functions. We describe the operators in the language of Clifford analysis.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F06%2FP267" target="_blank" >GP201/06/P267: Invariant differential operators and ambient metric construction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Hypercomplex Analysis
ISBN
978-3-7643-9892-7
Number of pages of the result
12
Pages from-to
—
Number of pages of the book
289
Publisher name
Birkhäuser
Place of publication
Basel
UT code for WoS chapter
—