Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057334" target="_blank" >RIV/00216224:14310/12:00057334 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.3692324" target="_blank" >http://dx.doi.org/10.1063/1.3692324</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.3692324" target="_blank" >10.1063/1.3692324</a>
Alternative languages
Result language
angličtina
Original language name
Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds
Original language description
On locally conformally flat manifolds, we describe a construction which maps generalised conformal Killing tensors to differential operators which may act on any conformally weighted tensor bundle; the operators in the range have the property that they are symmetries of any natural conformally invariant differential operator between such bundles. These are used to construct all symmetries of the conformally invariant powers of the Laplacian (often called the GJMS operators) on manifolds of dimension atleast 3. In particular, this yields all symmetries of the powers of the Laplacian on Euclidean space. The algebra formed by the symmetry operators is described explicitly.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
—
UT code for WoS article
000302216300006
EID of the result in the Scopus database
—