All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057334" target="_blank" >RIV/00216224:14310/12:00057334 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.3692324" target="_blank" >http://dx.doi.org/10.1063/1.3692324</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.3692324" target="_blank" >10.1063/1.3692324</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds

  • Original language description

    On locally conformally flat manifolds, we describe a construction which maps generalised conformal Killing tensors to differential operators which may act on any conformally weighted tensor bundle; the operators in the range have the property that they are symmetries of any natural conformally invariant differential operator between such bundles. These are used to construct all symmetries of the conformally invariant powers of the Laplacian (often called the GJMS operators) on manifolds of dimension atleast 3. In particular, this yields all symmetries of the powers of the Laplacian on Euclidean space. The algebra formed by the symmetry operators is described explicitly.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    000302216300006

  • EID of the result in the Scopus database