Second Order Symmetries of the Conformal Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00073575" target="_blank" >RIV/00216224:14310/14:00073575 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3842/SIGMA.2014.016" target="_blank" >http://dx.doi.org/10.3842/SIGMA.2014.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2014.016" target="_blank" >10.3842/SIGMA.2014.016</a>
Alternative languages
Result language
angličtina
Original language name
Second Order Symmetries of the Conformal Laplacian
Original language description
Let (M;g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M;g), which are given by dif ferential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood andCarter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry, Integrability and Geometry: Methods and Applications
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
16
Country of publishing house
UA - UKRAINE
Number of pages
26
Pages from-to
"nestrankovano"
UT code for WoS article
000334516200001
EID of the result in the Scopus database
—