All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Second order symmetries of the conformal laplacian and R-separation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00116104" target="_blank" >RIV/00216224:14310/15:00116104 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012058" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012058</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/597/1/012058" target="_blank" >10.1088/1742-6596/597/1/012058</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Second order symmetries of the conformal laplacian and R-separation

  • Original language description

    Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3, let Delta := del(a)g(ab)del(b) be the Laplace-Beltrami operator and let Delta(Y) be the conformal Laplacian. In some references, Kalnins and Miller provide an intrinsic characterization for R-separation of the Laplace equation Delta Psi = 0 in terms of second order conformal symmetries of Delta. The main goal of this paper is to generalize this result and to explain how the (resp. conformal) symmetries of Delta(Y) + V (where V is an arbitrary potential) can be used to characterize the R-separation of the Schrodinger equation (Delta(Y) + V)Psi = E Psi (resp. the Schrodinger equation at zero energy (Delta(Y) + V)Psi = 0). Using a result exposed in our previous paper, we obtain characterizations of the R-separation of the equations Delta(Y) Psi = 0 and Delta(Y) Psi = E Psi uniquely in terms of (conformal) Killing tensors pertaining to (conformal) Killing-Stackel algebras.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30)

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    1-11

  • Publisher name

    IOP PUBLISHING LTD

  • Place of publication

    BRISTOL

  • Event location

    Ghent, BELGIUM

  • Event date

    Jul 14, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000354929400058