Critical oscillation constant for Euler-type dynamic equations on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F14%3APU109620" target="_blank" >RIV/00216305:26620/14:PU109620 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0096300314009096" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0096300314009096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2014.06.066" target="_blank" >10.1016/j.amc.2014.06.066</a>
Alternative languages
Result language
angličtina
Original language name
Critical oscillation constant for Euler-type dynamic equations on time scales
Original language description
In this paper we study the second-order dynamic equation on the time scale $T$ of the form $$(r(t)y^{Delta })^Delta + frac{gamma q(t)}{tsigma(t)}y^{sigma}=0,$$ where $r$, $q$ are positive rd-continuous periodic functions with $inf{r(t),, tinT}>0$ and $gamma$ is an arbitrary real constant. This equation corresponds to Euler-type differential (resp. Euler-type difference) equation for continuous (resp. discrete) case. Our aim is to prove that this equation is conditionally oscillatory, i.e., there exists a constant $Gamma>0$ such that studied equation is oscillatory for $gamma>Gamma$ and non-oscillatory for $gamma<Gamma$.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
1873-5649
Volume of the periodical
243
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
838-848
UT code for WoS article
000340563800080
EID of the result in the Scopus database
2-s2.0-84904170655