Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU125167" target="_blank" >RIV/00216305:26210/17:PU125167 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/10236198.2017.1371146" target="_blank" >http://dx.doi.org/10.1080/10236198.2017.1371146</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2017.1371146" target="_blank" >10.1080/10236198.2017.1371146</a>
Alternative languages
Result language
angličtina
Original language name
Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales
Original language description
We are concerned with the oscillation problem for second-order nonlinear dynamic equations on time scales of the form $x^{Delta Delta} + f(x)/(t sigma(t)) = 0$, where $f(x)$ satisfies $x f(x) > 0$ if $x neq 0$. By means of Riccati technique and phase plane analysis of a system, (non)oscillation criteria are established. A necessary and sufficient condition for all nontrivial solutions of the Euler-Cauchy dynamic equation $y^{Delta Delta} +lambda/(t sigma(t)), y = 0$ to be oscillatory plays a crucial role in proving our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
1563-5120
Volume of the periodical
23
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
1884-1900
UT code for WoS article
000417787900006
EID of the result in the Scopus database
2-s2.0-85029422602