On asymptotic relationships between two higher order dynamic equations on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU123647" target="_blank" >RIV/00216305:26210/17:PU123647 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0893965917300502" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0893965917300502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2017.02.013" target="_blank" >10.1016/j.aml.2017.02.013</a>
Alternative languages
Result language
angličtina
Original language name
On asymptotic relationships between two higher order dynamic equations on time scales
Original language description
We consider the $n$-th order dynamic equations $x^{Delta^n}!+p_1(t)x^{Delta^{n-1}}+cdots+p_n(t)x=0$ and $y^{Delta^n}+p_1(t)y^{Delta^{n-1}}+cdots+p_n(t)y=f(t,y(tau(t)))$ on a time scale $mathbb{T}$, where $tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
2017
Issue of the periodical within the volume
73
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
84-90
UT code for WoS article
000404324100013
EID of the result in the Scopus database
2-s2.0-85019173566