Existence of unbounded solutions of a linear homogenous system of differential equations with two delays
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU111009" target="_blank" >RIV/00216305:26110/14:PU111009 - isvavai.cz</a>
Result on the web
<a href="http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10243" target="_blank" >http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdsb.2014.19.2447" target="_blank" >10.3934/dcdsb.2014.19.2447</a>
Alternative languages
Result language
angličtina
Original language name
Existence of unbounded solutions of a linear homogenous system of differential equations with two delays
Original language description
Asymptotic behavior of solutions of a linear homogeneous system of differential equations with deviating arguments in the form dot y(t)=beta(t)left[y(t-delta)-y(t-tau)right] is discussed for ttoinfty. It is assumed that y is an n-dimensional column vector, n>1$is an integer, delta,tauin{mathbb{R}}, tau>delta>0 and beta(t) is an ntimes n matrix defined for tgeq t_{0}, t_{0}inmathbb{R}, and such that its elements are nonnegative, continuous functions and in every row of this matrix is each time at least one element nonzero. The existence of solutions in an exponential form under certain assumptions is proved. Sufficient conditions for the existence of unbounded solutions are derived. The estimations for a solution are given and the scalar case is discussed as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/ED2.1.00%2F03.0097" target="_blank" >ED2.1.00/03.0097: AdMaS - Advanced Materials, Structures and Technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B
ISSN
1531-3492
e-ISSN
1553-524X
Volume of the periodical
19
Issue of the periodical within the volume
2014
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
2447-2459
UT code for WoS article
000341776200007
EID of the result in the Scopus database
2-s2.0-84907042847