Positive solutions of nonlinear delayed differential equations with impulses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU123878" target="_blank" >RIV/00216305:26110/17:PU123878 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.aml.2017.04.004" target="_blank" >https://doi.org/10.1016/j.aml.2017.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2017.04.004" target="_blank" >10.1016/j.aml.2017.04.004</a>
Alternative languages
Result language
angličtina
Original language name
Positive solutions of nonlinear delayed differential equations with impulses
Original language description
The paper is concerned with the long-term behavior of solutions to scalar nonlinear functional delayed differential equations $$dot y(t)=-f(t,y_t),,,,tge t_0. $$ It is assumed that $fcolon [t_0,infty)times {cal C} mapsto {mathbb{R}}$ is a~continuous mapping satisfying a~local Lipschitz condition with respect to the second argument and ${cal C}:={C}([-r,0],mathbb{R})$, $r>0$ is the Banach space of conti-nu-ous functions. The problem is solved of the existence of positive solutions if the equation is subjected to impulses $y(t_s^+)=b_sy(t_s)$, $s=1,2,dots$, where $t_0le t_1< t_2<dots$ and $b_s>0$, $s=1,2,dots,,$. A criterion for the existence of positive solutions on $[t_0-r,infty)$ is proved and their upper estimates are given. Relations to previous results are discussed as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1408" target="_blank" >LO1408: AdMaS UP – Advanced Building Materials, Structures and Technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
72
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
16-22
UT code for WoS article
000403126700003
EID of the result in the Scopus database
2-s2.0-85018516235