All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Positive solutions of nonlinear delayed differential equations with impulses

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU123878" target="_blank" >RIV/00216305:26110/17:PU123878 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.aml.2017.04.004" target="_blank" >https://doi.org/10.1016/j.aml.2017.04.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aml.2017.04.004" target="_blank" >10.1016/j.aml.2017.04.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Positive solutions of nonlinear delayed differential equations with impulses

  • Original language description

    The paper is concerned with the long-term behavior of solutions to scalar nonlinear functional delayed differential equations $$dot y(t)=-f(t,y_t),,,,tge t_0. $$ It is assumed that $fcolon [t_0,infty)times {cal C} mapsto {mathbb{R}}$ is a~continuous mapping satisfying a~local Lipschitz condition with respect to the second argument and ${cal C}:={C}([-r,0],mathbb{R})$, $r>0$ is the Banach space of conti-nu-ous functions. The problem is solved of the existence of positive solutions if the equation is subjected to impulses $y(t_s^+)=b_sy(t_s)$, $s=1,2,dots$, where $t_0le t_1< t_2<dots$ and $b_s>0$, $s=1,2,dots,,$. A criterion for the existence of positive solutions on $[t_0-r,infty)$ is proved and their upper estimates are given. Relations to previous results are discussed as well.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LO1408" target="_blank" >LO1408: AdMaS UP – Advanced Building Materials, Structures and Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS LETTERS

  • ISSN

    0893-9659

  • e-ISSN

  • Volume of the periodical

    72

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    16-22

  • UT code for WoS article

    000403126700003

  • EID of the result in the Scopus database

    2-s2.0-85018516235