Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU123879" target="_blank" >RIV/00216305:26620/17:PU123879 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.aml.2016.07.016" target="_blank" >https://doi.org/10.1016/j.aml.2016.07.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2016.07.016" target="_blank" >10.1016/j.aml.2016.07.016</a>
Alternative languages
Result language
angličtina
Original language name
Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations
Original language description
A linear differential equation with advanced-argument $y'(t)-c(t)y(t+tau)=0$ is considered where $ccolon [t_0,infty)to [0,infty)$, $t_0in bR$ is a bounded and locally Lipschitz continuous function and $tau>0$. The well-known explicit integral criterion $$ int_{t}^{t+tau}c(s),diff sle{1}/{e},,,,,tin[t_0,infty) $$ guarantees the existence of a positive solution on $[t_0,infty)$. The paper derives new integral criteria involving the coefficient $c$. Their independence of the previous result is discussed as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
72
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
40-45
UT code for WoS article
000384398000007
EID of the result in the Scopus database
2-s2.0-84980488401