All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU123879" target="_blank" >RIV/00216305:26620/17:PU123879 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.aml.2016.07.016" target="_blank" >https://doi.org/10.1016/j.aml.2016.07.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aml.2016.07.016" target="_blank" >10.1016/j.aml.2016.07.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations

  • Original language description

    A linear differential equation with advanced-argument $y'(t)-c(t)y(t+tau)=0$ is considered where $ccolon [t_0,infty)to [0,infty)$, $t_0in bR$ is a bounded and locally Lipschitz continuous function and $tau>0$. The well-known explicit integral criterion $$ int_{t}^{t+tau}c(s),diff sle{1}/{e},,,,,tin[t_0,infty) $$ guarantees the existence of a positive solution on $[t_0,infty)$. The paper derives new integral criteria involving the coefficient $c$. Their independence of the previous result is discussed as well.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS LETTERS

  • ISSN

    0893-9659

  • e-ISSN

  • Volume of the periodical

    72

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    40-45

  • UT code for WoS article

    000384398000007

  • EID of the result in the Scopus database

    2-s2.0-84980488401