New explicit integral criteria for the existence of positive solutions to the linear advanced equation $dot x(t) = c (t) x (t + tau)$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU111250" target="_blank" >RIV/00216305:26110/14:PU111250 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0893965914002341" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0893965914002341</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2014.06.020" target="_blank" >10.1016/j.aml.2014.06.020</a>
Alternative languages
Result language
angličtina
Original language name
New explicit integral criteria for the existence of positive solutions to the linear advanced equation $dot x(t) = c (t) x (t + tau)$
Original language description
The paper is devoted to the investigation of a linear differential equation with advanced argument $y'(t)=c(t)y(t+tau)$ where $tau>0$ is a constant advanced argument and the function $ccolon [t_0,infty)to [0,infty)$, $t_0in bR$ is bounded and locally Lipschitz continuous. New explicit integral criteria for the existence of a positive solution in terms of $c$ and $tau$ are derived and their efficiency is demonstrated.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/ED2.1.00%2F03.0097" target="_blank" >ED2.1.00/03.0097: AdMaS - Advanced Materials, Structures and Technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
2014
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
144-148
UT code for WoS article
000343379400027
EID of the result in the Scopus database
2-s2.0-84907061736