Bounded solutions of delay dynamic equations on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F12%3APU101175" target="_blank" >RIV/00216305:26110/12:PU101175 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bounded solutions of delay dynamic equations on time scales
Original language description
In this paper we discuss the asymptotic behavior of solutions of a delay dynamic equation $$y^{Delta}(t)=f(t,y(tau(t)))$$ where $fcolonmathbb{T}timesmathbb{R}rightarrowmathbb{R}$, taucolonTrightarrow T$ is a delay function and $mathbb{T}$ is a time scale. We formulate a principle which gives the guarantee that the graph of at least one solution of above mentioned equation stays in the prescribed domain. This principle uses the idea of the retraction method and is a suitable tool for investigating the asymptotic behavior of solutions of dynamic equations. This is illustrated by an example.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Difference Equations
ISSN
1687-1847
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
2012
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
1-9
UT code for WoS article
—
EID of the result in the Scopus database
—