All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounded solutions of delay dynamic equations on time scales

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F12%3APU101175" target="_blank" >RIV/00216305:26110/12:PU101175 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounded solutions of delay dynamic equations on time scales

  • Original language description

    In this paper we discuss the asymptotic behavior of solutions of a delay dynamic equation $$y^{Delta}(t)=f(t,y(tau(t)))$$ where $fcolonmathbb{T}timesmathbb{R}rightarrowmathbb{R}$, taucolonTrightarrow T$ is a delay function and $mathbb{T}$ is a time scale. We formulate a principle which gives the guarantee that the graph of at least one solution of above mentioned equation stays in the prescribed domain. This principle uses the idea of the retraction method and is a suitable tool for investigating the asymptotic behavior of solutions of dynamic equations. This is illustrated by an example.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Difference Equations

  • ISSN

    1687-1847

  • e-ISSN

  • Volume of the periodical

    2012

  • Issue of the periodical within the volume

    2012

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

  • EID of the result in the Scopus database