Lower and upper estimates of solutions to systems of delay dynamic equations on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU106700" target="_blank" >RIV/00216305:26220/13:PU106700 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lower and upper estimates of solutions to systems of delay dynamic equations on time scales
Original language description
In this paper we study a system of delay dynamic equations on the time scale $T$ of the form $$y^{Delta}(t)=f(t,y_{tau}(t)),$$ where $fcolonmathbb{T}timesmathbb{R}^nrightarrowmathbb{R}^n$, $y_tau(t)=(y_1(tau_1(t)),ldots,y_n(tau_n(t)))$ and $tau_icolonTrightarrow T$, $i=1,ldots,n$ are the delay functions. We are interested about the asymptotic behavior of solutions of mentioned system. More precisely, we formulate conditions on a function $f$, which guarantee that the graph of at least one solution of above mentioned system stays in the prescribed domain. This result generalizes some previous results concerning the asymptotic behavior of solutions of non-delay systems of dynamic equations or of delay dynamic equations. A relevant example is considered.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Boundary Value Problems
ISSN
1687-2762
e-ISSN
1687-2770
Volume of the periodical
2013
Issue of the periodical within the volume
216
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
1-14
UT code for WoS article
—
EID of the result in the Scopus database
—