Asymptotic behavior of solutions of systems of dynamic equations on time scales in a set whose boundary is a combination of strict egress and strict ingress points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F14%3APU108997" target="_blank" >RIV/00216305:26620/14:PU108997 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0096300314005451" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0096300314005451</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2014.04.021" target="_blank" >10.1016/j.amc.2014.04.021</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic behavior of solutions of systems of dynamic equations on time scales in a set whose boundary is a combination of strict egress and strict ingress points
Original language description
In this paper we study the asymptotic behavior of solutions of nonlinear dynamic systems on time scales of the form $$y^Delta(t)=f(t,y(t)),$$ where $fcolonmathbb{T}timesmathbb{R}^nrightarrowmathbb{R}^n$ and $mathbb{T}$ is a time scale. For a given set $Omegasubsetmathbb{T}timesmathbb{R}^{n}$, we formulate the conditions for function $f$, which guarantee that at least one solution $y$ of the above system stays in $Omega$. The dimension of the space of initial data generating such solutions is discussed and perturbed linear systems are considered as well. A linear system with singularity at infinity is considered as an example.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
1873-5649
Volume of the periodical
238
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
289-299
UT code for WoS article
000336522400026
EID of the result in the Scopus database
2-s2.0-84899653569